Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Smart Materials in Medicine ; 4:257-265, 2023.
Article in English | Scopus | ID: covidwho-2240217

ABSTRACT

Nowadays, malignant brain tumors are still mostly lethal diseases with poor prognosis and a clinical median survival rate of fewer than 2 years after therapeutic intervention. It is difficult to achieve complete remission of brain tumors due to blood-brain barrier (BBB) and a lack of efficient drug delivery systems to targeted transportation of brain tumor medicines. Nanoparticle delivery systems have shown merits including stability and high carrier capacity for the transportation of different drugs to treat brain tumors. The application of mRNA nanomedicines brings in great promise not only in COVID-19, but also for malignant brain tumor immunotherapy. The appropriate delivery system facilitates mRNA delivery efficiency and enhances the immune response successfully, for optimal treatment outcomes on malignant brain tumors. Herein, we do an updated review on the development of mRNA nanomedicines for malignant brain cancer treatment. We focus on how to design mRNA-loaded nanoparticle-based delivery systems with optimized pharmacokinetics and pharmacodynamics for efficient therapy of brain cancers. In addition, we point out the challenges and solutions for further development of mRNA nanomedicines for brain cancer therapy. We hope this review would stimulate interest among researchers with different backgrounds and expedite the translation from bench to bedside for the mRNA nanomedicines. © 2022 The Authors

2.
Smart Materials in Medicine ; 2022.
Article in English | ScienceDirect | ID: covidwho-2120031

ABSTRACT

Nowadays, malignant brain tumors are still mostly lethal diseases with poor prognosis and a clinical median survival rate of fewer than 2 years after therapeutic intervention. It is difficult to achieve complete remission of brain tumors due to blood-brain barrier (BBB) and a lack of efficient drug delivery systems to targeted transportation of brain tumor medicines. Nanoparticle delivery systems have shown merits including stability and high carrier capacity for the transportation of different drugs to treat brain tumors. The application of mRNA nanomedicines brings in great promise not only in COVID-19, but also for malignant brain tumor immunotherapy. The appropriate delivery system facilitates mRNA delivery efficiency and enhances the immune response successfully, for optimal treatment outcomes on malignant brain tumors. Herein, we do an updated review on the development of mRNA nanomedicines for malignant brain cancer treatment. We focus on how to design mRNA-loaded nanoparticle-based delivery systems with optimized pharmacokinetics and pharmacodynamics for efficient therapy of brain cancers. In addition, we point out the challenges and solutions for further development of mRNA nanomedicines for brain cancer therapy. We hope this review would stimulate interest among researchers with different backgrounds and expedite the translation from bench to bedside for the mRNA nanomedicines.

SELECTION OF CITATIONS
SEARCH DETAIL